
Sequential Circuit Design

Overview

 Sequential Circuit Design

 Specification

 Formulation

 State Assignment

 Flip-Flop Input and Output Equation

 Verification

The Design Procedure

 Specification - Description of the Problem

 Formulation - Obtain a state diagram or state table

 State Assignment - Assign binary codes to the states

 Flip-Flop Input Equation Determination
• Select flip-flop types
• Derive flip-flop equations from next state entries in the table

 Output Equation Determination
• Derive output equations from output entries in the table

 Optimization - Optimize the equations

 Technology Mapping - Use available flip-flops and gate technology

 Verification - Verify correctness of final design

Formulation: Finding a State Diagram

 A State is an abstraction of the history of the past
applied inputs to the sequential circuit

 A state is used to remember something about the history
of input combinations applied to the circuit
• The interpretation of past inputs is tied to the synchronous

operation of the circuit
• An input value is considered only during the setup-hold time

interval for an edge-triggered flip-flop.

 Examples:
• State A represents the fact that a ‘1’ input has occurred among

the past inputs.
• State B represents the fact that a ‘0’ followed by a ‘1’ have

occurred as the most recent past two inputs.

Formulation: Finding a State Diagram

 In specifying a circuit, we use states to remember
meaningful properties of past input sequences that are
essential to predicting future output values

 A sequence recognizer is a sequential circuit that
produces a distinct output value whenever a prescribed
pattern of input symbols occur in sequence, i.e,
recognizes an input sequence occurence

 We will develop a procedure specific to sequence
recognizers to convert a problem statement into a state
diagram

 Next, the state diagram, will be converted to a state
table from which the circuit will be designed

Sequence Recognizer Procedure

 Begin in an initial state in which NONE of the initial
portion of the sequence has occurred (reset state)

 Add a state that recognizes that first symbol has occurred

 Add states that recognize each successive symbol

 The final state represents the input sequence occurence

 Add state transition arcs which specify what happens
when a symbol not in the proper sequence has occurred

 Add other arcs which transition to states that represent
the input subsequence that has occurred
• The circuit must recognize the input sequence regardless of

where it occurs within the overall sequence

Sequence Recognizer Example

 Example: Recognize the sequence 1101

• Example: the sequence 1111101 contains 1101

 Thus, the sequential machine must remember that the
first two one's have occurred as it receives another
symbol

 Also, the sequence 1101101 contains 1101 as both an
initial subsequence and a final subsequence with some
overlap, i. e., 1101101 or 1101101

 The 1 in the middle, 1101101, is in both subsequences

 The sequence 1101 must be recognized each time it
occurs in the input sequence

Example: Recognize 1101

 Define states for the sequence to be recognized:
• Assuming it starts with first symbol

• Continues through each symbol in the sequence to be recognized

• Uses output 1 to mean the full sequence has occurred

• With output 0 otherwise

 Start in the initial state
• State ‘A’ is the initial state
• Add a state ‘B’ that recognizes the first ‘1’
• State ‘B’ is the state which represents the fact that the first ‘1’ in

the input subsequence has occurred. The output symbol ‘0’
means that the full recognized sequence has not yet occurred

A B
1/0

 After one more ‘1’, we have:
• C is the state obtained when

the input sequence has two ‘1’s.

 Finally, after ‘110’ and a ‘1’, we have:

• Transition arcs are used to denote the output function

• Output ‘1’ on the arc from D means the sequence is recognized

• To what state should the arc from state D go? recall 1101101

Example: Recognize 1101 (continued)

A B1/0

A B1/0 C
1/0 0/0

C1/0

D 1/1 ?

Example: Recognize 1101 (continued)

 Clearly the final ‘1’ in the recognized sequence
1101 is a sub-sequence of 1101. It follows a ‘0’
which is not a sub-sequence of 1101. Thus it
should represent the same state reached from the
initial state after a first ‘1’ is observed. We obtain:

A B1/0 C1/0 0/0

DA B1/0 C1/0 0/0

1/1

D 1/1

Example: Recognize 1101 (continued)

 The states have the following meanings:
• A: Start state, no sub-sequence has occurred

• B: The sub-sequence ‘1’ has occurred

• C: The sub-sequence ‘11’ has occurred

• D: The sub-sequence ‘110’ has occurred

• The 1/1 on the arc from D to B means that the last ‘1’
in 1101 has occurred and thus, the output is ‘1’

1/1

A B1/0
C

1/0
D

0/0

Example: Recognize 1101 (continued)

 The other arcs are added to each state for inputs
are not yet listed. Which arcs are missing?

 Answer:
• ‘0’ arc from state A
• ‘0’ arc from state B
• ‘1’ arc from state C
• ‘0’ arc from state D

1/1

A B
1/0

C
1/0

D
0/0

Example: Recognize 1101 (continued)

 Add the arcs for missing inputs at any state to
make the state diagram complete. We get:

 The ‘1’ arc from state C to itself implies that
State C means two or more 1's have occurred.

C

1/1

A B1/0 1/0
D

0/0

0/0

0/0 1/0

0/0

Formulation: Find the State Table

 From the State Diagram, we can fill in the State Table

 There are 4 states, one
input, and one output

 We will draw a table
with four rows, one for
each current state

 From State A, the ‘0’ and
‘1’ input transitions have
been filled in along with
the outputs

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A
B
C
D

1/0

B 0

0/0

A 0

Formulation: Find State Table

 From the state diagram, we obtain the state table
1/00/0

0/0

0/0

1/1

A B1/0
C

1/0
D

0/0

State
Present Next State

x=0 x=1
Output

x=0 x=1
A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

State Assignment

 Each state must be assigned a unique code

 Minimum number of bits required for m states in
the state diagram is n such that

n ≥ log2 m , where x is the smallest integer ≥ x

 There are useful state assignments that use more
than the minimum number of bits

 If n bits are used, there are 2n – m unused states

 What is the minimum number of bits to code 4 states?
• Answer: 2 bits (log2 4 = 2). Therefore, 2 flip-flops are required
• With 2 bits, we can have 4 codes: 00, 01, 10, and 11

 How may assignments of 2-bit codes to the 4 states?
• Answer: 4 × 3 × 2 × 1 = 24 possible assignments

 Does code assignment make a difference in cost?
• Answer: yes, it affects the cost of the combinational logic

State Assignment – Example

Present
State

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

 One possible assignment is Counting Order
A = 00, B = 01, C = 10, D = 11

 The resulting coded state table:

Counting Order State Assignment

Present State
Y1 Y2

Next State
x = 0 x = 1

Output Z
x = 0 x = 1

A = 0 0 0 0 0 1 0 0
B = 0 1 0 0 1 0 0 0
C = 1 0 1 1 1 0 0 0
D = 1 1 0 0 0 1 0 1

General Structure of Sequence Detector

 To implement the 1101 sequence detector
• Choose the type of flip-flops that will be used as memory elements

• Determine and minimize the next state and output equations

• These equations are functions of input and current state

• Implement the next state and output combinational logic

Next State and

Output Logic

Memory
Elements

Input X Output Z

Next
State

Current
State

Find Next State and Output K-maps

D1 D2 Z

 Assume D flip-flops & counting order assignment
 Obtain the K-maps for flip-flop inputs D1, D2,

and output Z

Y1Y2
X

1

0
00

00
1

1

0 1

00

01

11

10

Y1Y2
X

0

0
10

10
0

1

0 1

00

01

11

10

Y1Y2
X

0

0
00

10
0

0

0 1

00

01

11

10

Perform two-level optimization

D1 = Y1Y2 + XY1Y2

D2 = XY1Y2 + XY1Y2 + XY1Y2

Z = XY1Y2 Gate Input Cost = 22

Y2

Y1

X

0

0
10

10
0

1

Y2

Y1

X

1

0
00

00
1

1

D1 D2 Z

Y2

Y1

X

0

0
00

10
0

0

 Another possible assignment is Gray Code:
A = 00, B = 01, C = 11, D = 10
 The resulting coded state table:

Gray Code State Assignment

Present State
Y1 Y2

Next State
x = 0 x = 1

Output Z
x = 0 x = 1

A = 0 0 0 0 0 1 0 0
B = 0 1 0 0 1 1 0 0
C = 1 1 1 0 1 1 0 0
D = 1 0 0 0 0 1 0 1

K-Maps for Gray Code State Assignment

Y2

Y1

X

1

0
00

00
0

0

Y2

Y1

X

1

0
10

10
1

0

Y2

Y1

X

0

0
00

11
1

0

 Assume D flip-flops and gray code assignment
 Obtain K-maps for D1, D2, and Z:

D1 D2 Z

Perform two-level optimization

D1 = Y1Y2 + XY2 Gate Input Cost = 9
D2 = X Select this state assignment to
Z = XY1Y2 complete the design

Y2

Y1

X

1

0
00

00
0

0

Y2

Y1

X

1

0
10

10
1

0

Y2

Y1

X

0

0
00

11
1

0

D1 D2 Z

 Library: D-type Flip-Flops with Reset input
• Reset input is used to reset to start state: Y1 Y2 = ‘00’

Map to Technology

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

Y2

D1

D2

Circuit Implementation with NAND

Clock

D

D

C
R

Y2

Z

C
R

Y1

X

Reset

Y2

D1

D2

Using SR, JK, and T Flip-Flop Types

 Characteristic table (used in analysis)
• Defines the next state of the flip-flop in terms of flip-

flop inputs and current state

 Characteristic equation (used also in analysis)
• Obtained from characteristic table

• Defines the next state of the flip-flop as a Boolean
function of the flip-flop inputs and the current state

 Excitation table (used in design)
• Defines the flip-flop input variable values as function

of the current state and next state

 Characteristic Equation
Q(t+1) = S + R Q(t)
S R = 0 (S and R cannot be 1
simultaneously)

SR Flip-Flop

 Characteristic Table

 Excitation Table
Operation

No change
Set
Reset

No change

S

X

0
1
0

Q(t+1)

0
1

1

0

Q(t)

0
0

1

1

R

X
0
1

0

0
0
1

1

OperationS

0
1
0

1

R

No change
Reset
Set

Undefined

0
1

?

Q(t+1)

Q(t)

S

C

R

Symbol

Q

Q

JK Flip-Flop

 Characteristic Table

 Excitation Table J

C

K

Symbol

Q

Q

0
0
1
1

No change

Set
Reset

Complement

OperationJ

0
1
0
1

K

0
1

Q(t+1)

Q(t)

Q(t)

Q(t +1)

0
1

1
0

Q(t)

0
0

1
1

Operation

X
X

0
1

K

0
1

X
X

J

No change
Set
Reset
No Change

 Characteristic Equation
Q(t+1) = J Q(t) + K Q(t)

T Flip-Flop

 Characteristic Table

 Excitation Table T

C

Symbol

Q

Q

 Characteristic Equation
Q(t+1) = T  Q(t)

No change
Complement

Operation

0
1

T Q(t+1)

Q(t)
Q(t)

Q(t +1)

0
1

1
0

Q(t)

0
0

1
1

Operation

0
1

0
1

T

No change
Complement
Complement
No Change

Obtaining Excitation Table for Flip Flops

 Use T flip flop for Y1 and JK flip flop for Y2

 Use Gray code assignment for states
 Obtain Excitation table for T and JK inputs:

Present
State

Next
State

T input
for Y1

JK input
for Y2

Output
Z

Y1 Y2 x=0 x=1 x=0 x=1 x=0 x=1 x=0 x=1
A = 0 0 0 0 0 1 0 0 0 X 1 X 0 0
B = 0 1 0 0 1 1 0 1 X 1 X 0 0 0
C = 1 1 1 0 1 1 0 0 X 1 X 0 0 0
D = 1 0 0 0 0 1 1 1 0 X 1 X 0 1

Optimize Equations for T, J, and K

 T = Y1 Y2 + X Y1 Y2, J = X, K = X
 Z = X Y1 Y2 (no change)
 Total Gate Input Cost = 7 + 3 = 10

T J K
Y1Y2

x

1

0
00

00
1

1

0 1

00

01

11

10

Y1Y2
x

1

X
10

XX
X

0

0 1

00

01

11

10

Y1Y2
x

X

1
XX

01
0

X

0 1

00

01

11

10

 Reset input is used to reset Y1Y2 to ‘00’ (start state)

Circuit Implementation

Clock

T

J

C
R

Y2

Z

C
R

Y1

X

Reset

Y2
KX

Y
1

One-Hot Assignment

 Use one flip-flop per state: m states  m flip-flops
• Y3Y2Y1Y0 = 0001 (state A), 0010 (B), 0100 (C), 1000 (D)

 Flip-flop cost is higher but combinational logic
might be simpler

 Provides simplified analysis and design
• In equations, need to include only the variable that is 1

for the state, e. g., state with code 0001, is represented
in equations by Y0 instead of Y3 Y2 Y1 Y0 because if Y0
is ‘1’ then the remaining state variables will be ‘0’

 A = 0001, B = 0010, C = 0100, D = 1000
 The resulting coded state table:

One-Hot State Assignment

Present State
Y3 Y2 Y1 Y0

Next State
x = 0 x = 1

Output
x = 0 x = 1

0001 0001 0010 0 0
0010 0001 0100 0 0
0100 1000 0100 0 0
1000 0001 0010 0 1

Optimization: One Hot Assignment

 No need for K-map, flip-flop input equations can
be obtained directly from the state table
 Assume D Flip-Flops

D0 = X(Y0+ Y1 + Y3) or X Y2

D1 = X(Y0+ Y3) = X Y1 Y2

D2 = X(Y1+ Y2) = X Y0 Y3

D3 = X Y2

Z = XY3 Gate Input Cost = 12
 Total cost = combinational circuit cost + cost of

four flip-flops

Mealy and Moore Sequential Circuits

 Two ways to design clocked sequential circuits
• Mealy and Moore type sequential circuits

 Mealy type sequential circuit
• Output is a function of current state and input

• Example: 1101 sequence detector discussed above

Next State and

Output Logic

Memory
Elements

Input X Output Z

Next
State

Current
State

Moore Type Sequential Circuits

 Output depends on current state only
• Output does not depend on input

 Combinational logic is divided into two parts
• Next state logic depends on input and current state
• Output logic depends on current state only

Next State
Logic

Memory
Elements

Input X

Output Z

Next
StateCurrent

State

Output
Logic

Moore Model for Sequence 1101 Detector

 For the Moore Model, outputs depend on states

 We need to add a state E with output value ‘1’ for
the final ‘1’ in the recognized input sequence

• This new state E, though similar to B, would generate
an output of ‘1’ and thus be different from state B

 The Moore model for a sequence recognizer
usually has more states than the Mealy model

Moore State Diagram

 We mark outputs on
states for Moore model

 For Mealy, outputs
were marked on arcs

 Arcs now show state
transitions and input only

 Add a new state E to
produce the output 1

 Note that the new state E
produces the same behavior as
state B, but gives a different output: ‘1’ rather than ‘0’

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Moore State Table

 State and output tables
are shown below

 Observe that output y
does not depend on input x

A/0 B/0 C/0 D/0

0

E/1

0

0

0

11

1

110

Present
State

Next State
x=0 x=1

Output
y

A A B 0
B A C 0
C D C 0
D A E 0
E A C 1

Moore state
diagram typically
results in More

states

State Assignment for Moore Detector

 As in the Mealy sequence detector, the Moore sequence
detector follows the same procedure for state assignment
and optimizing the circuit implementation

 Using one-hot assignment, 5 state variables are required

Present State Next State Output
Y4 Y3 Y2 Y1 Y0 x=0 x=1 Z
A = 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
B = 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

C = 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
D = 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
E = 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

Equations for Moore Sequence Detector

 Using D Flip Flops, input equations:
D0 = X (Y0 + Y1 + Y3 + Y4) = X Y2

D1 = X Y0

D2 = X (Y1 + Y2 + Y4) = X Y0 Y3

D3 = X Y2

D4 = X Y3

 Output Equation Z
Z = Y4

 Gate input cost = 11

Circuit Implementation

D2 Y2D Q

QR

D4 Y4D Q

QR

D3 Y3D Q

QR

Z

X
X

D0 Y0D Q

QS

Y2 Y3

D1 Y1D Q

QR
Y0

Reset

Clock

Reset to
Start State
A = ‘00001’

Reset
Y4Y3Y2Y1

and set Y0

Verification

 Sequential circuits should be verified by showing that the
circuit produces the original state diagram

 Verification can be done manually, or with the help of a
simulation program

 All possible input combinations are applied at each state
and the state variables and outputs are observed

 A reset input is used to reset the circuit to its initial state

 Apply a sequence of inputs to test all the state-input
combinations, i.e., all transitions in the state diagram

 Observe the output and the next state that appears after
each clock edge in the timing diagram

Input Test Sequence
 An input test sequence is required to verify the correct

operation of a sequential circuit
 It should test each state transition of the state diagram
 Test sequences can be generated from the state diagram
 Consider the Moore sequence detector. Starting at A

(after reset), we can generate an input test sequence:
X = 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0

1 1 0reset

0 1

0
0

1A
0

B
0

C
0

D
0

E
1

0

1

7,10,14

1 2,4,12 5,13

3

11

6

8,15

9

16

Verifying the Moore Sequence Detector

Clock
Reset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Input X 0 0 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0

Y0

Y1

Y2

Y3

Y4

Output Z

A A A A A

B B B

C C C C

D D D

E E

1 1

Moore versus Mealy Sequential Circuits

 Output in a Moore sequential circuit is associated with a
state, while output in a Mealy circuit is associated with a
transition between states

 In general, Moore state diagrams have more states than
corresponding Mealy state diagrams and the Moore
sequential circuit implementation might have higher cost

 Since the output in a Mealy machine is a combination of
present state and input values, an unsynchronized input
may result in an invalid output (drawback of Mealy)

 A Moore state diagram produces a unique output for
every state irrespective of inputs. Output of a Moore
machine is synchronized with the clock (better)

1

0

1/1

Designing a ‘111’ Sequence Detector

 To illustrate the drawback of the Mealy machine,
consider the design of a ‘111’ sequence detector

B
1/0

C
1/0

0/0
0/0

0/0

A
reset Mealy State

Diagram

C
0

1 D
1

1A
0

reset

0

B
0

1
0

0

Moore State
Diagram

State Assignment and Equations

 A minimum of 2 state variables are required
 Using Gray Code state assignment and D flip flops

Present State Next State Output
Y1 Y0 x=0 x=1 Z

A = 0 0 0 0 0 1 0
B = 0 1 0 0 1 1 0

C = 1 1 0 0 1 0 0
D = 1 0 0 0 1 0 1

Present State Next State Output
Y1 Y0 x=0 x=1 x=0 x=1

A = 0 0 0 0 0 1 0 0
B = 0 1 0 0 1 1 0 0

C = 1 1 0 0 1 1 0 1

Mealy State Table Moore State Table

 D1 = X Y0

 D0 = X
 Z = X Y1

 D1 = X (Y0 + Y1)

 D0 = X Y1 Z = Y1 Y0

Timing Diagrams

Clock
Reset

X 1 1 0 1 1 1 1

Y1

Y0

Z

Y1

Y0

Z

M
ea

ly
M

oo
re

C = 11A = 00 B = 01 A = 00 B = 01 C = 11 C = 11 C = 11

C = 11A = 00 B = 01 A = 00 B = 01 C = 11 D = 10 D = 10

False Output

